欢迎进入洛阳汇智测控技术有限公司官方网站!
洛阳汇智测控 · 新闻动态
行业资讯 您的当前位置:首页 > 新闻动态 > 行业资讯

半导体激光体——激光技术的应用

更新时间:2019-02-27 10:38:20点击次数:1304次
激光技术的原理是:当光或电流的能量撞击某些晶体或原子等易受激发的物质,使其原子的电子达到受激发的高能量状态,当这些电子要回复到平静的低能量状态时,原子就会射出光子,以放出多余的能量;而接着,这些被放出的光子又会撞击其它原子,激发更多的原子产生光子,引发一连串的“连锁反应”,并且都朝同一个方前进,形成强烈而且集中朝向某个方向的光。这种光就叫做激光。激光几乎是一种单色光波,频率范围极窄,又可在一个狭小...

激光技术的原理是:当光或电流的能量撞击某些晶体或原子等易受激发的物质,使其原子的电子达到受激发的高能量状态,当这些电子要回复到平静的低能量状态时,原子就会射出光子,以放出多余的能量;而接着,这些被放出的光子又会撞击其它原子,激发更多的原子产生光子,引发一连串的“连锁反应”,并且都朝同一个方前进,形成强烈而且集中朝向某个方向的光。这种光就叫做激光。激光几乎是一种单色光波,频率范围极窄,又可在一个狭小的方向内集中高能量,因此利用聚焦后的激光束可以对各种材料进行打孔。激光因为拥有这种特性,所以拥有广泛的应用。

半导体激光器是用半导体材料作为工作物质的一类激光器,由于物质结构上的差异,产生激光的具体过程比较特殊。常用材料有砷化镓(GaAs)、硫化镉(CdS)、磷化铟(InP)、硫化锌(ZnS)等。激励方式有电注入、电子束激励和光泵浦三种形式。自1962年世界上第一只半导体激光器是问世以来,经过几十年来的研究,半导体激光器得到了惊人的发展,它的波长从红外、红光到蓝绿光,被盖范围逐渐扩大,各项性能参数也有了很大的提高!半导体激光器具有体积小、效率高等优点,因此可广泛应用于激光通信、印刷制版、光信息处理等方面。

半导体激光器是一种相干辐射光源,要使它能产生激光,必须具备三个基本条件:

1.增益条件:建立起激射媒质(有源区)内载流子的反转分布,在半导体中代表电子能量的是由一系列接近于连续的能级所组成的能带,因此在半导体中要实现粒子数反转,必须在两个能带区域之间,处在高能态导带底的电子数比处在低能态价带顶的空穴数大很多,这靠给同质结或异质结加正向偏压,向有源层内注人必要的载流子来实现。将电子从能量较低的价带激发到能量较高的导带中去。当处于粒子数反转状态的大量电子与空穴复合时,便产生受激发射作用。

2.要实际获得相干受激辐射,必须使受激辐射在光学谐振腔内得到多次反馈而形成激光振荡,激光器的谐振腔是由半导体晶体的自然解理面作为反射镜形成的,通常在不出光的那一端镀上高反多层介质膜,而出光面镀上减反膜。对Fp(法布里一珀罗腔)半导体激光器可以很方便地利用晶体的与Pn结平面相垂直的自然解理面一[110]面构成FP腔。

3.为了形成稳定振荡,激光媒质必须能提供足够大的增益,以弥补谐振腔引起的光损耗及从腔面的激光输出等引起的损耗,不断增加腔内的光场。这就必须要有足够强的电流注入,即有足够的粒子数反转,粒子数反转程度越高,得到的增益就越大,即要求必须满足一定的电流阀值条件。当激光器达到阀值时,具有特定波长的光就能在腔内谐振并被放大,最后形成激光而连续地输出。

可见在半导体激光器中,电子和空穴的偶极子跃迁是基本的光发射和光放大过程。对于新型半导体激光器而言,人们目前公认量子阱是半导体激光器发展的根本动力。量子线和量子点能否充分利用量子效应的课题已延至本世纪,科学家们已尝试用自组织结构在各种材料中制作量子点,而GaInN量子点已用于半导体激光器。另外,科学家也已经做出了另一类受激辐射过程的量子级联激光器,这种受激辐射基于从半导体导带的一个次能级到同一能带更低一级状态的跃迁,由于只有导带中的电子参与这种过程,因此它是单极性器件。

一、半导体激光器在激光光谱学中的应用

激光光谱是以激光为光源的光谱技术,主要用于分子光谱、等离子物理、高阶谐波产生的科学应用及大气污染的监测和癌症的诊断等。而选用半导体激光器作为激光光谱学的光源中有较多优势,它体积小,输入能量低,寿命长,可协调性强且价格低廉。例如图即为“SPECDILASV763OXY"VCSEL所探测的氧气的吸收光谱(半导体激光器的工作温度为Top=10℃,Iset=4.6mA,加32Hz,10.6mV的锯齿波,256次平均)。可以看出,通过改变工作电流很容易地得到氧气的两个吸收峰,无模式跳跃。

二、在固化成型技术中的应用

光固化成型法(Stereo lithography Appearance,简称SLA)是最早出现的快速原型制造工艺,由于它成型过程自动化程度高、制作原型表面质量好、尺寸精度较高且能够实现比较精细的尺寸成型,在单件小批量精密铸造、概念设计的交流、产品模型、快速工模具及直接面向产品的模具等诸多方面广泛应用于航空、汽车、电器、消费品以及医疗等行业得到了广泛应用。其成型原理如图2所示,用特定波长与强度的激光聚焦到光固化材料表面,使之由点到线,由线到面顺序凝固,完成一个层面的绘图作业,然后升降台在垂直方向移动一个层片的高度,再固化另一个层面.这样层层叠加直至构成一个三维实体。而紫外半导体激光器技术的发展,为SLA提供了最好的光源,在电光效率、成本、体积、寿命和可靠性等指标上堪称最优,在光谱、谱线宽度、功率等性能方面也完全符合其工艺要求,因此现在进行这种新型光源的研究已成为现实。

三、在军事领域中的应用

伴随激光技术的日趋成熟,半导体激光器的应用范围覆盖了整个光电子学领域,它在军事领域也得到了广泛应用,成为我国国防事业不可或缺的中坚力量。如半导体激光雷达,主要是波长820~850 nm LD 及列阵。新型半导体激光雷达与被动探测(红外系统)相结合,具有多种成像功能,包括强度成像、距离成像和速度成像等,具有先进的实时图像处理功能,包括各种成像的综合、图像跟踪和目标的自动识别等。此外,半导体激光器也在激光测距、激光模拟武器、激光警戒、激光制导跟踪、引燃引爆等方面获得了广泛的应用。

四、在医疗领域中的应用

半导体激光器体积小、成本低、寿命长、波长可选择、输出功率稳定等优点,特别适用于医疗设备,其临床应用几乎覆盖了所有其他类型的激光器的应用范围。如低功率810nm近红外半导体激光器,由于该波长的激光穿透能力强,屈光间质对它吸收最少,光斑直径可调范围大 ,是眼科中最常用的热源,可用于治疗青光眼、硅油注入术后难治性高眼压以及视网膜的光凝和固定等;810nm半导体激光起能够很好被毛囊内黑色素吸收,产生热效应,破坏毛囊,完成脱毛的效果;大功率半导体激光器也广泛应用于肿瘤的激光切割、凝固手术。这些都为人类的健康进一步提供了保障。

五、在通信中的应用

半导体激光器在信息的获取,传输,存储和处理以及显示中也得到广泛应用。21世纪,随着光纤通信的发展,半导体激光器光作为光纤通信系统中的光源,是关键元件,是整个系统的核心部分,短距离的光纤通信采用单模光纤和130~150nm波长的半导体激光器,空间通信用列阵半导体激光器。全球光纤通信市场前景广阔,因此,半导体激光器的市场前景也是非常好的。

六、在激光打印和印刷中的应用

激光打印机脱胎于80年代末的激光照排技术,流行于90年代中期。它是将激光扫描技术和电子照相技术相结合的打印输出设备。较其他打印设备,激光打印机有打印速度快、成像质量高等优点。10-100nm的高功率半导体激光器主要用于高速激光打印机。一般为网络化办公打印机,包括新出现的彩色激光打印机(打印速度为12-35p/min)。用激光把资料直接写在印刷板上正成为印刷技术工业的一种发展趋势,不仅节省很多中间环节、降低成本,而且加快了速度,因此此种应用预计会稳定增长,如采用1W二极管激光器64元阵列、用光纤藕合配以透镜系统。目前多数激光、计算机、印刷系统采用卤素银或光敏有机物的光敏材料。杜邦公司、柯达公司等均在致力于开发此类热敏材料,采用半导体激光器日益增多,此项应用市场也呈蓬勃发展。

电话:
Notice: Undefined variable: cfg_dy in /www/wwwroot/huige.com.cn/footer.php on line 126